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Subfactors

II1 factor: an infinite dimensional von Neumann algebra with a unique
normal tracial state tr and trivial center. It is hyperfinite if it can be
approximated by finite dimensional C*-algebras.

Subfactor N ⊂ M: a unital inclusion of II1 factors. It is irreducible if
dimN ′ ∩M = 1.

Standard representation L2(M, tr): the GNS representation of M with
respect to the trace tr. The orthogonal projection eN : L2(M) → L2(N) is
called the Jones projection.

Jones Index [M : N]: measures how “big” M is relative to N, can be
shown it is equal to tr(eN)

−1.

Basic construction: N ⊂ M ⊂ ⟨M, eN⟩ ⊂ B(L2(M)). M1 := ⟨M, eN⟩ will
be a II1 factor precisely when [M : N] < ∞.
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Subfactor invariants

Whenever [M : N] < ∞ we can iterate the basic construction and get the
Jones tower N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · ⊂ ∪n≥1Mn

w
= M∞

Standard invariant: is the lattice of inclusions

N′ ∩ N ⊂ N′ ∩M ⊂ N′ ∩M1 ⊂ · · · ⊂ N′ ∩Mn ⊂ · · ·
⊂ ⊂ ⊂

M′ ∩M ⊂ M′ ∩M1 ⊂ · · · ⊂ M′ ∩Mn ⊂ · · ·

Principal and dual principal graphs: they are two graphs (Γ, Γ′) that
describe the top and bottom tower of inclusions in the standard invariant.
We say N ⊂ M has finite depth if Γ is finite.

When Γ = Γ′ = A∞ = . . . we say N ⊂ M
has trivial standard invariant (also referred as A∞-subfactor).

Julio Cáceres (Vanderbilt University) New infinite depth subfactors February 3, 2025 4 / 27



Open questions

1 What are all possible standard invariants for hyperfinite irreducible
subfactors?

2 What are all hyperfinite subfactors N ⊂ M with small index?

3 What is {[M : N], N ⊂ M hyperfinite, N ′ ∩M = C}? (Jones’83)

Theorem (Jones rigidity [Jon83])
Consider a unital inclusion N ⊂ M of II1-factors, then

[M : N] ∈
{

4 cos2
(π
n

)
, n ≥ 3

}
∪ [4,∞].

Moreover, every index is attained by some hyperfinite subfactor.
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Landscape (finite depth)

[M : N] ≤ 4: ADE classification

4 < [M : N] < 5.25: classification of small index subfactors (work of
many people)

Index # of subfactors Name
1
2(5 +

√
13) 2 Haagerup

≈ 4.37720 2 Extended Haagerup
1
2(5 +

√
17) 2 Asaeda-Haagerup

3 +
√

3 2 3311
1
2(5 +

√
21) 2 2221

5 7 -
≈ 5.04892 2 su(2)5 and su(3)4
3 +

√
5 11 -
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What about infinite depth?

Irreducible hyperfinite subfactor at index ≈ 4.026418.

If 4 < [M : N] < 3 +
√

5 then it has trivial standard invariant, i.e. it is
an A∞-subfactor.

Schou constructed many other irreducible hyperfinite subfactors
coming from commuting squares with index different from previous
ones.

Conjecture (Bisch)
Every index of a hyperfinite finite depth irreducible subfactor is the index of
a hyperfinite A∞ subfactor.
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Commuting squares

A1,0
K
⊂ A1,1

⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L

∪ ∪

A0,0
H
⊂ A0,1

⊂ A0,2 ⊂ · · · ⊂ A0,∞

 subfactor

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

They satisfy:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Julio Cáceres (Vanderbilt University) New infinite depth subfactors February 3, 2025 8 / 27



Commuting squares

A1,0
K
⊂ A1,1

⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L

∪ ∪

A0,0
H
⊂ A0,1

⊂ A0,2 ⊂ · · · ⊂ A0,∞

 subfactor

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

They satisfy:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Julio Cáceres (Vanderbilt University) New infinite depth subfactors February 3, 2025 8 / 27



Commuting squares

A1,0
K
⊂ A1,1

⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L

∪ ∪

A0,0
H
⊂ A0,1

⊂ A0,2 ⊂ · · · ⊂ A0,∞

 subfactor

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

They satisfy:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Julio Cáceres (Vanderbilt University) New infinite depth subfactors February 3, 2025 8 / 27



Commuting squares

A1,0
K
⊂ A1,1 ⊂ A1,2

⊂ · · · ⊂ A1,∞

⊂G ⊂L ∪

∪

A0,0
H
⊂ A0,1 ⊂ A0,2

⊂ · · · ⊂ A0,∞

 subfactor

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

They satisfy:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Julio Cáceres (Vanderbilt University) New infinite depth subfactors February 3, 2025 8 / 27



Commuting squares

A1,0
K
⊂ A1,1 ⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L ∪ ∪

A0,0
H
⊂ A0,1 ⊂ A0,2 ⊂ · · · ⊂ A0,∞

 subfactor

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

They satisfy:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Julio Cáceres (Vanderbilt University) New infinite depth subfactors February 3, 2025 8 / 27



Commuting squares

A1,0
K
⊂ A1,1 ⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L ∪ ∪

A0,0
H
⊂ A0,1 ⊂ A0,2 ⊂ · · · ⊂ A0,∞

 subfactor

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

They satisfy:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Julio Cáceres (Vanderbilt University) New infinite depth subfactors February 3, 2025 8 / 27



Constructing commuting squares

Theorem (Ocneanu’s bi-unitary condition [Sch90])
The following are equivalent:

There exists a commuting square
A1,0

K
⊂ A1,1

⊂G ⊂L
A0,0

H
⊂ A0,1

.

There exists a bi-unitary connection on the square of inclusions.

This reduces the problem of constructing a commuting square to solving a
large system of non-linear equations.

Problem: These equations vary wildly whenever you change G ,H,K , L.
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Planar algebras

A planar algebra is a collection of vector spaces {Pn,±} which admit
actions by diagrams like this:

$

$

$
$

,
$

$

$

, . . .

Two important examples by V. Jones:

Given N ⊂ M an irreducible finite index subfactor, the standard
invariant has a planar algebra structure. We denote this planar algebra
by PN⊂M

• .

Given G a bipartite graph, the loop spaces on G have a planar algebra
structure. We denote this planar algebra by GPA(G )•.

Julio Cáceres (Vanderbilt University) New infinite depth subfactors February 3, 2025 10 / 27



Module graphs and embeddings

Theorem (Grossman, Morrison, Penneys, Peters, Snyder ’23)
Suppose P• is a finite depth subfactor planar algebra. Let C denote the
unitary multifusion category of projections in P•, with distinguished object
X = id1,+ ∈ P1,+, and the standard unitary pivotal structure with respect
to X . There is an equivalence between:

1 Planar algebra embeddings P• ↪→ GPA(G )•, and
2 indecomposable finitely semisimple pivotal left C-module C ∗ categories

M whose fusion graph with respect to X is G (we call such G a
module graph).
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Embedding theorem

Using Ocneanu’s compactness, some facts about Pimsner-Popa basis and
loop algebra formulas we prove the following:

Theorem (Bisch, C’22)
Let P• be the subfactor planar algebra associated to A0,∞ ⊂ A1,∞ and
GPA(G )• the graph planar algebra associated to the inclusion graph of
A0,0 ⊂ A1,0. Then P• embeds into GPA(G )•.

A1,0
K
⊂ A1,1 ⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L ∪ ∪

A0,0
H
⊂ A0,1 ⊂ A0,2 ⊂ · · · ⊂ A0,∞
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Main idea
Let N ⊂ M be a finite depth hyperfinite subfactor and G a graph that is
not a module graph for N ⊂ M, i.e. PN⊂M

• ̸↪→ GPA(G )•.

If A0,∞ ⊂ A1,∞ comes from a commuting square
A1,0

K
⊂ A1,1

⊂G ⊂L
A0,0

H
⊂ A0,1

we get

P
A0,∞⊂A1,∞
• ↪→ GPA(G )•. Hence, A0,∞ ⊂ A1,∞ is not isomorphic to

N ⊂ M.

We know a lot about the module graphs for:

Peters: Haagerup subfactor (3 graphs)

GMPPS: Extended Haagerup subfactor (4 graphs)

We computed 14 potential module graphs for the Asaeda-Haagerup
subfactor using combinatorial data obtained by Grossman, Izumi and
Snyder.
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Non-module graphs

Large double broom

∥ · ∥2 = 5+
√

17
2

Quipu

∥ · ∥2 ≈ 4.37720
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New A∞-subfactors

Theorem (Bisch, C’23)
If G is one of the previous graphs, there exist H, K and L for which we can
construct a bi-unitary connection.

We have constructed irreducible hyperfinite subfactors with indices 5+
√

17
2

(the same as Asaeda-Haagerup) and ≈ 4.37720 (the same as
Extended-Haagerup), by our graph planar algebra embedding and
classification they must be A∞-subfactors.

Corollary (Bisch, C’23)

There are hyperfinite A∞-subfactors with indices 5+
√

17
2 and ≈ 4.37720.
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More connections

S(i , i , j , j) =
A

a1

b1

· · ·
· · ·

ai

bj

c1

d1

· · ·
· · ·

cj

di

Let G = S(i , i , j , j), the 4-star with two pairs of legs of equal length.

Theorem (Bisch, C’23)
There exists a 1-parameter family of non-equivalent bi-unitary connections

for all i , j for inclusions of the form
A1,0

Gt

⊂ A1,1
⊂G ⊂G t

A0,0
G
⊂ A0,1

.
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Another approach to show infinite depth

Kawahigashi proved that given a finite depth subfactor N ⊂ M, there
are only countably many non-equivalent commuting squares from
which the subfactor can be constructed.

By classification of small index subfactors we have finitely many finite
depth subfactors at the indices 5+

√
17

2 , 3 +
√

3, 5+
√

21
2 , 5 and 3 +

√
5.

Our 1-parameter families of non-equivalent bi-unitary connections
must produce at least one infinite depth subfactor.
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Indices of S(i , i , j , j)

j
i

1 2 3 4 · · · ∞

1 4

2 5+
√

17
2 5

3 3 +
√

3 5.1249 3 +
√

5

4 5+
√

21
2 5.1642 5.2703 7+

√
13

2
...

...
...

...
...

. . .

∞ 2 + 2
√

2 5.1844 5.2870 5.3184 16
3

Hence we have hyperfinite infinite depth subfactors at 5+
√

17
2 , 3 +

√
3,

5+
√

21
2 , 5 and 3 +

√
5. By classification, all but the last one must be

A∞-subfactors.
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Intermediate commuting squares

A1,0
K
⊂ A1,1 ⊂ A1,2 ⊂ · · · ⊂ A1,∞ = M

⊂G ⊂L ∪ ∪

A0,0
H
⊂ A0,1 ⊂ A0,2 ⊂ · · · ⊂ A0,∞ = N

Theorem (Bisch, C’24)
Let N ⊂ P ⊂ M be an intermediate subfactor and set B1,n = A1,n ∩ P .
Then

B1,0 ⊂ B1,1

⊂G1 ⊂L1

A0,0
H
⊂ A0,1

,
A1,0

K
⊂ A1,1

⊂G2 ⊂L2

B1,0 ⊂ B1,1

are both non-degenerate commuting squares approximating N ⊂ P and
P ⊂ M respectively.

�: G1,G2, L1, L2 are not necessarily connected.
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Index 3 +
√

5

At index 3 +
√

5 we also have the infinite depth subfactor A3 ∗ A4,
which has an intermediate subfactor with indices 3+

√
5

2 and 2.

If G = S(3, 3, 3, 3), there exist no Gi such that G = G1G2 and

∥G1∥2 =
3 +

√
5

2
, ∥G2∥2 = 2.

The 1-parameter family of connections for S(3, 3, 3, 3) must produce a
hyperfinite A∞-subfactor with index 3 +

√
5.
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Conclusion

There are hyperfinite A∞-subfactors at each of these indices:

Index constructed using. . .
1
2(5 +

√
13) GPA embedding

≈ 4.37720 GPA embedding
1
2(5 +

√
17) both

3 +
√

3 1-parameter family
1
2(5 +

√
21) 1-parameter family

5 1-parameter family
3 +

√
5 1-parameter family
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Thank you very much!
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