New hyperfinite subfactors with infinite depth

Julio E. Cáceres Gonzales (joint with Dietmar Bisch)

Vanderbilt University

February 3, 2025

Quantum Groups Seminar

Outline

- Preliminaries
 - Subfactors
 - Motivation
 - Commuting squares
 - Planar algebras
- 2 New A_{∞} -subfactors
 - Main idea
 - New commuting squares
 - Intermediate commuting squares

Subfactors

II₁ **factor**: an infinite dimensional von Neumann algebra with a unique normal tracial state tr and trivial center. It is *hyperfinite* if it can be approximated by finite dimensional C*-algebras.

Subfactor $N \subset M$: a unital inclusion of II_1 factors. It is *irreducible* if $\dim N' \cap M = 1$.

Standard representation $L^2(M, \operatorname{tr})$: the GNS representation of M with respect to the trace tr . The orthogonal projection $e_N: L^2(M) \to L^2(N)$ is called the *Jones projection*.

Jones Index [M:N]: measures how "big" M is relative to N, can be shown it is equal to $tr(e_N)^{-1}$.

Basic construction: $N \subset M \subset \langle M, e_N \rangle \subset B(L^2(M))$. $M_1 := \langle M, e_N \rangle$ will be a II_1 factor precisely when $[M:N] < \infty$.

Subfactor invariants

Whenever $[M:N]<\infty$ we can iterate the basic construction and get the Jones tower $N\subset M\subset M_1\subset M_2\subset\cdots\subset\overline{\cup_{n\geq 1}M_n}^w=M_\infty$

Standard invariant: is the lattice of inclusions

Principal and dual principal graphs: they are two graphs (Γ, Γ') that describe the top and bottom tower of inclusions in the standard invariant. We say $N \subset M$ has finite depth if Γ is finite.

When $\Gamma = \Gamma' = A_{\infty} = \bigcirc - - \bigcirc - \cdots$ we say $N \subset M$ has *trivial standard invariant* (also referred as A_{∞} -subfactor).

Open questions

- What are all possible standard invariants for hyperfinite irreducible subfactors?
- ② What are all hyperfinite subfactors $N \subset M$ with small index?
- **3** What is $\{[M:N], N \subset M \text{ hyperfinite}, N' \cap M = \mathbb{C}\}$? (Jones'83)

Open questions

- What are all possible standard invariants for hyperfinite irreducible subfactors?
- ② What are all hyperfinite subfactors $N \subset M$ with small index?
- **③** What is {[M : N], $N \subset M$ hyperfinite, $N' \cap M = \mathbb{C}$ }? (Jones'83)

Theorem (Jones rigidity [Jon83])

Consider a unital inclusion $N \subset M$ of II_1 -factors, then

$$[M:N] \in \left\{4\cos^2\left(\frac{\pi}{n}\right), \ n \geq 3\right\} \cup [4,\infty].$$

Moreover, every index is attained by some hyperfinite subfactor.

Landscape (finite depth)

- $[M:N] \le 4$: ADE classification
- 4 < [M: N] < 5.25: classification of small index subfactors (work of many people)

Index	# of subfactors	Name	
$\frac{1}{2}(5+\sqrt{13})$	2	Haagerup	
\approx 4.37720	2	Extended Haagerup	
$\frac{1}{2}(5+\sqrt{17})$	2	Asaeda-Haagerup	
$3 + \sqrt{3}$	2	3311	
$\frac{1}{2}(5+\sqrt{21})$	2	2221	
5	7	-	
≈ 5.04892	2	$\mathfrak{su}(2)_5$ and $\mathfrak{su}(3)_4$	
$3 + \sqrt{5}$	11	-	

What about infinite depth?

- Irreducible hyperfinite subfactor at index \approx 4.026418.
- If $4 < [M:N] < 3 + \sqrt{5}$ then it has trivial standard invariant, i.e. it is an A_{∞} -subfactor.
- Schou constructed many other irreducible hyperfinite subfactors coming from commuting squares with index different from previous ones.

What about infinite depth?

- Irreducible hyperfinite subfactor at index \approx 4.026418.
- If $4 < [M:N] < 3 + \sqrt{5}$ then it has trivial standard invariant, i.e. it is an A_{∞} -subfactor.
- Schou constructed many other irreducible hyperfinite subfactors coming from commuting squares with index different from previous ones.

Conjecture (Bisch)

Every index of a hyperfinite finite depth irreducible subfactor is the index of a hyperfinite A_{∞} subfactor.

$$A_{1,0} \stackrel{\sim}{\subset} A_{1,1}$$

$$\cup_G \qquad \cup_L$$

$$A_{0,0} \stackrel{\mathsf{H}}{\subset} A_{0,1}$$

$$\begin{array}{cccc} A_{1,0} & \overset{\mathsf{K}}{\subset} & A_{1,1} \\ \cup_{\mathcal{G}} & & \cup_{\mathcal{L}} \\ A_{0,0} & \overset{\mathsf{H}}{\subset} & A_{0,1} \end{array}$$

• $E_{A_{1,0}}E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)

$$\begin{array}{cccc} A_{1,0} & \stackrel{\mathsf{K}}{\subset} & A_{1,1} \\ \cup_{G} & & \cup_{L} \\ A_{0,0} & \stackrel{\mathsf{H}}{\subset} & A_{0,1} \end{array}$$

- $E_{A_{1,0}}E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)
- GK = HL and $G^tH = KL^t$ (non-degenerate)

- $E_{A_{1,0}}E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)
- GK = HL and $G^tH = KL^t$ (non-degenerate)

- $E_{A_{1,0}}E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)
- GK = HL and $G^tH = KL^t$ (non-degenerate)

- $E_{A_{1,0}}E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)
- GK = HL and $G^tH = KL^t$ (non-degenerate)

They satisfy:

- $[A_{1,\infty}:A_{0,\infty}] = ||G||^2 = ||L||^2$
- Always hyperfinite
- Irreducible if G (or L) satisfy Wenzl's criterion

Constructing commuting squares

Theorem (Ocneanu's bi-unitary condition [Sch90])

The following are equivalent:

$$A_{1,0} \subset A_{1,1}$$

 $A_{1,0} \overset{K}{\subset} A_{1,1}$ • There exists a commuting square $\bigcup_G \bigcup_L$.

$$A_{0,0} \stackrel{H}{\subset} A_{0,1}$$

• There exists a bi-unitary connection on the square of inclusions.

Constructing commuting squares

Theorem (Ocneanu's bi-unitary condition [Sch90])

The following are equivalent:

$$A_{1,0} \subset A_{1,1}$$

• There exists a commuting square $\bigcup_G \overset{K}{\subset} A_{1,1}$

$$A_{0,0} \stackrel{H}{\subset} A_{0,1}$$

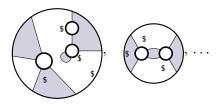
• There exists a bi-unitary connection on the square of inclusions.

This reduces the problem of constructing a commuting square to solving a large system of non-linear equations.

Problem: These equations vary wildly whenever you change G, H, K, L.

Planar algebras

A planar algebra is a collection of vector spaces $\{P_{n,\pm}\}$ which admit actions by diagrams like this:



Two important examples by V. Jones:

- Given $N \subset M$ an irreducible finite index subfactor, the standard invariant has a planar algebra structure. We denote this planar algebra by $P^{N \subset M}_{\bullet}$.
- Given G a bipartite graph, the loop spaces on G have a planar algebra structure. We denote this planar algebra by $GPA(G)_{\bullet}$.

Module graphs and embeddings

Theorem (Grossman, Morrison, Penneys, Peters, Snyder '23)

Suppose P_{\bullet} is a finite depth subfactor planar algebra. Let $\mathcal C$ denote the unitary multifusion category of projections in P_{\bullet} , with distinguished object $X=\mathrm{id}_{1,+}\in P_{1,+}$, and the standard unitary pivotal structure with respect to X. There is an equivalence between:

- **1** Planar algebra embeddings $P_{\bullet} \hookrightarrow GPA(G)_{\bullet}$, and
- indecomposable finitely semisimple pivotal left C-module C* categories M whose fusion graph with respect to X is G (we call such G a module graph).

Embedding theorem

Using Ocneanu's compactness, some facts about Pimsner-Popa basis and loop algebra formulas we prove the following:

Theorem (Bisch, C'22)

Let P_{\bullet} be the subfactor planar algebra associated to $A_{0,\infty}\subset A_{1,\infty}$ and $GPA(G)_{\bullet}$ the graph planar algebra associated to the inclusion graph of $A_{0,0}\subset A_{1,0}$. Then P_{\bullet} embeds into $GPA(G)_{\bullet}$.

Main idea

Let $N \subset M$ be a finite depth hyperfinite subfactor and G a graph that is not a module graph for $N \subset M$, i.e. $P^{N \subset M}_{\bullet} \not\hookrightarrow GPA(G)_{\bullet}$.

If
$$A_{0,\infty}\subset A_{1,\infty}$$
 comes from a commuting square $egin{array}{cccc} A_{1,0} & \subset & A_{1,1} \\ \cup_G & & \cup_L & \text{we get} \\ A_{0,0} & \subset & A_{0,1} \\ \end{array}$

 $P^{A_{0,\infty}\subset A_{1,\infty}}_{ullet}\hookrightarrow GPA(G)_{ullet}$. Hence, $A_{0,\infty}\subset A_{1,\infty}$ is not isomorphic to $N\subset M$.

Main idea

Let $N \subset M$ be a finite depth hyperfinite subfactor and G a graph that is not a module graph for $N \subset M$, i.e. $P^{N \subset M}_{\bullet} \not\hookrightarrow GPA(G)_{\bullet}$.

If
$$A_{0,\infty}\subset A_{1,\infty}$$
 comes from a commuting square $egin{array}{cccc} A_{1,0} & \stackrel{\mathcal{K}}{\subset} & A_{1,1} \\ \cup_{G} & & \cup_{L} & \text{we get} \\ A_{0,0} & \stackrel{\mathsf{H}}{\subset} & A_{0,1} \\ \end{array}$

 $P^{A_{0,\infty}\subset A_{1,\infty}}_{ullet}\hookrightarrow GPA(G)_{ullet}$. Hence, $A_{0,\infty}\subset A_{1,\infty}$ is not isomorphic to $N\subset M$.

We know a lot about the module graphs for:

- Peters: Haagerup subfactor (3 graphs)
- GMPPS: Extended Haagerup subfactor (4 graphs)
- We computed 14 potential module graphs for the Asaeda-Haagerup subfactor using combinatorial data obtained by Grossman, Izumi and Snyder.

Non-module graphs

Large double broom
$$\|\cdot\|^2 = \frac{5+\sqrt{17}}{2}$$
 Quipu
$$\|\cdot\|^2 \approx 4.37720$$

New A_{∞} -subfactors

Theorem (Bisch, C'23)

If G is one of the previous graphs, there exist H, K and L for which we can construct a bi-unitary connection.

New A_{∞} -subfactors

Theorem (Bisch, C'23)

If G is one of the previous graphs, there exist H, K and L for which we can construct a bi-unitary connection.

We have constructed irreducible hyperfinite subfactors with indices $\frac{5+\sqrt{17}}{2}$ (the same as Asaeda-Haagerup) and \approx 4.37720 (the same as Extended-Haagerup), by our graph planar algebra embedding and classification they must be A_{∞} -subfactors.

Corollary (Bisch, C'23)

There are hyperfinite A_{∞} -subfactors with indices $\frac{5+\sqrt{17}}{2}$ and pprox 4.37720.

More connections

$$S(i,i,j,j) = \begin{array}{c} a_i & a_1 & c_1 & c_j \\ \bullet & \cdots & \bullet & A & \bullet & \cdots & \bullet \\ b_j & b_1 & d_1 & d_i \end{array}$$

Let G = S(i, i, j, j), the 4-star with two pairs of legs of equal length.

Theorem (Bisch, C'23)

There exists a 1-parameter family of non-equivalent bi-unitary connections

for all i, j for inclusions of the form $A_{1,0} \stackrel{G}{\subset} A_{1,1}$ $A_{0,0} \stackrel{G}{\subset} A_{0,1}$

Another approach to show infinite depth

- Kawahigashi proved that given a finite depth subfactor $N \subset M$, there are only countably many non-equivalent commuting squares from which the subfactor can be constructed.
- By classification of small index subfactors we have finitely many finite depth subfactors at the indices $\frac{5+\sqrt{17}}{2}$, $3+\sqrt{3}$, $\frac{5+\sqrt{21}}{2}$, 5 and $3+\sqrt{5}$.
- Our 1-parameter families of non-equivalent bi-unitary connections must produce at least one infinite depth subfactor.

Indices of S(i, i, j, j)

j	1	2	3	4		∞
1	4					
2	$\frac{5+\sqrt{17}}{2}$	5				
3	$3+\sqrt{3}$	5.1249	$3 + \sqrt{5}$			
4	$\frac{5+\sqrt{21}}{2}$	5.1642	5.2703	$\frac{7+\sqrt{13}}{2}$		
:	:	:	:	:	٠	
∞	$2 + 2\sqrt{2}$	5.1844	5.2870	5.3184		16 3

Hence we have hyperfinite infinite depth subfactors at $\frac{5+\sqrt{17}}{2}$, $3+\sqrt{3}$, $\frac{5+\sqrt{21}}{2}$, 5 and $3+\sqrt{5}$. By classification, all but the last one must be A_{∞} -subfactors.

Intermediate commuting squares

Theorem (Bisch, C'24)

Let $N \subset P \subset M$ be an intermediate subfactor and set $B_{1,n} = A_{1,n} \cap P$. Then

are both non-degenerate commuting squares approximating $N \subset P$ and $P \subset M$ respectively.

 $\underline{\wedge}$: G_1, G_2, L_1, L_2 are not necessarily connected.

Index
$$3 + \sqrt{5}$$

- At index $3 + \sqrt{5}$ we also have the infinite depth subfactor $A_3 * A_4$, which has an intermediate subfactor with indices $\frac{3+\sqrt{5}}{2}$ and 2.
- If G = S(3,3,3,3), there exist no G_i such that $G = G_1G_2$ and

$$\|G_1\|^2 = \frac{3+\sqrt{5}}{2}, \|G_2\|^2 = 2.$$

• The 1-parameter family of connections for S(3,3,3,3) must produce a hyperfinite A_{∞} -subfactor with index $3+\sqrt{5}$.

Conclusion

There are hyperfinite A_{∞} -subfactors at each of these indices:

Index	constructed using		
$\frac{1}{2}(5+\sqrt{13})$	GPA embedding		
≈ 4.37720	GPA embedding		
$\frac{1}{2}(5+\sqrt{17})$	both		
$3 + \sqrt{3}$	1-parameter family		
$\frac{1}{2}(5+\sqrt{21})$	1-parameter family		
5	1-parameter family		
$3+\sqrt{5}$	1-parameter family		

Thank you very much!

References I

Narjess Afzaly, Scott Morrison, and David Penneys.

The classification of subfactors with index at most $5\frac{1}{4}$.

Mem. Amer. Math. Soc., 284(1405):v+81, 2023.

Dietmar Bisch and Vaughan Jones.

Algebras associated to intermediate subfactors.

Invent. Math., 128(1):89-157, 1997.

Pinhas Grossman, Masaki Izumi, and Noah Snyder.

The Asaeda-Haagerup fusion categories.

J. Reine Angew. Math., 743:261–305, 2018.

References II

Pinhas Grossman, Scott Morrison, David Penneys, Emily Peters, and Noah Snyder.

The extended Haagerup fusion categories.

Ann. Sci. Éc. Norm. Supér. (4), 56(2):589-664, 2023.

Pinhas Grossman and Noah Snyder.

The Brauer-Picard group of the Asaeda-Haagerup fusion categories.

Trans. Amer. Math. Soc., 368(4):2289–2331, 2016.

Vaughan Jones, Scott Morrison, and Noah Snyder.

The classification of subfactors of index at most 5.

Bull. Amer. Math. Soc. (N.S.), 51(2):277-327, 2014.

References III

Vaughan Jones.

Index for subfactors.

Invent. Math., 72(1):1-25, 1983.

Vaughan Jones.

Planar algebras, I.

New Zealand J. Math., 52:1-107, 2021 [2021-2022].

Vaughan Jones and David Penneys.

The embedding theorem for finite depth subfactor planar algebras.

Quantum Topol., 2(3):301-337, 2011.

References IV

Yasuyuki Kawahigashi.

A characterization of a finite-dimensional commuting square producing a subfactor of finite depth.

Int. Math. Res. Not. IMRN, (10):8419-8433, 2023.

Vijay Kodiyalam and Viakalathur S. Sunder.

On Jones' planar algebras.

J. Knot Theory Ramifications, 13(2):219–247, 2004.

Emily Peters.

A planar algebra construction of the Haagerup subfactor.

Internat. J. Math., 21(8):987-1045, 2010.

References V

John K. Schou.

Commuting squares and index for subfactors.

1990.

Thesis (Ph.D.)—Odense Universitet Institut for Matematik og Datalogi, see also arXiv:1304.5907v1.